

∰aa

Recommended Velocities For Line Sizing ∰aa Calculation for Pipe Diameter Selection: From 25mm To 300 mm 1. From Ammonia Table properties: vapour enthalpy at compressor suction $h_1 {=}\ 1467.385 \ kJ/kg$ **Compressor Suction Line** 15m/s 18m/s Wet Return To L.P. Vessel 15m/s 12m/s 2. Liquid Enthalpy at h₃=h₄=390.64 kJ/kg 3. Refrigerating Effect: h1-h3=1467.385-Ammonia Pump Suction 0.3m/s 0.5m/s 390.64=1076.745 kJ/kg Line Ammonia Pump 1.0 m/s 1.0m/s 4. For 100 kW mass flow : 100/1076.745= 0.09287 kg/s . Discharge Line 5. Specific volume of gas at point 1: 0.24321 m3/kg Condenser to Receiver 6. Volume flow rate required at compressor suction: 0.09287x0.24321=0.022586m³/s=81.31m³/hr. 0.3m/s 0.5m/s Line Liquid Feed from main 1m/s 1.5m/s 7. Assuming suction line velocity as 12m/s, the pipe receiver cross sectional area would be 0.001882m² or 1882 Compressor Discharge 18m/s 20m/s mm² Line 8. Diameter of pipe would be: √1882 =43.38mm AS diameter increases, ratio of cross section area to circumference increase and one can have higher velocity Select nearest size available as 50 NB

13

26th June 2020

ion, Dischar	ge Line, and	l Liquid Ca	Table 2 Suction, Discharge Line, and Liquid Capacities in Kilowatts for Ammonia (Single- or High-Stage Applications)						
Suction Lines ($\Delta t = 0.02$ K/m)			Discharge Lines $\Delta t = 0.02 \text{ K/m}, \Delta p = 684.0 \text{ Pa/m}$				Liquid Lines		
Saturated -30 $\Delta p = 116.3$	-20 Δp = 168.8	perature, °C _5 ∆p = 276.6	+5 ∆p = 370.5	Saturate	d Suction To	emp., °C +5	Steel Nominal Line Size, mm	Velocity = 0.5 m/s	∆ <i>p</i> = 450.0
1.2	1.9	3.5	4.9	8.0	8.3	8.5	10	3.9	63.8
2.3	3.6	6.5	9.1	14.9	15.3	15.7	15	63.2	118.4
4.9	7.7	13.7	19.3	31.4	32.3	33.2	20	110.9	250.2
9.4	14.6	25.9	36.4	59.4	61.0	62.6	25	179.4	473.4
19.6	30.2	53.7	75.4	122.7	126.0	129.4	32	311.0	978.0
29.5	45.5	80.6	113.3	184.4	189.4	194.5	40	423.4	1469.4
57.2	88.1	155.7	218.6	355.2	364.9	374.7	50	697.8	2840.5
91.6	140.6	248.6	348.9	565.9	581.4	597.0	65	994.8	4524.8
162.4	249.0	439.8	616.9	1001.9	1029.3	1056.9	80	1536.3	8008.8
332.6	509.2	897.8	1258.6	2042.2	2098.2	2154.3	_	-	_
601.8	902.6	1622.0	2271.4	3682.1	3783.0	3884.2	-	-	_
975.6	1491.4	2625.4	3672.5	5954.2	6117.4	6281.0	-	-	_
2003.3	3056.0	5382.5	7530.4	12195.3	12 529.7	12 864.8	-	-	_
3625.9	5539.9	9733.7	13619.6	22 0 28.2	22 632.2	23 237.5	_	_	_
5813.5	8873.4	15568.9	21787.1	35 2 39.7	36 206.0	37 174.3	-	-	_
	Suttor 36 μ = 116.3 -30 Δp = 116.3 2.3 4.9 9.4 19.6 27.2 91.6 162.4 322.6 601.8 975.6 2003.3 3625.9 5813.5	$\begin{tabular}{ c c c c c } \hline Suction Lines (\Delta t = 1 \\ \hline Suttrated Section Lines (\Delta t = 1 \\ \hline Suttrated Section Lines (\Delta t = 1 \\ \hline -36 & -26 \\ \hline -36 & -2$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

		\sim			26 th Ju	ne 2020
~ ~ ~ ~				• • • • • • • • • • • • • • • • • • • •	IM X. н	1726
SUC	TION LIN	IE SELI	ECTION			IGH
SUC	TION LIN	IE SELI TEMP				
SUC	TION LIN	IE SELI TEMP	ERATU			
SUC		IE SELI TEMP	Saturated Suction	IRE Temperature, °C		
SUC		IE SELI TEMP	Saturated Suction	IRE		5
SUC Steel Nominal Line Size, mm		IE SELI TEMP 20 ∆r = 0.01 K/m ∆p = 84.4 Pa/m	Saturated Suction	a Temperature, °C -5 $\Delta t = 0.01 \text{ K/m}$ $\Delta p = 138.3 \text{ Pa/m}$	Δr = 0.005 K/m Δp = 92.6 Pa/m	+5 Δt = 0.01 K/n Δp = 185.3 Pa/
SUC		20 Δ <i>t</i> = 0.01 K/m Δ <i>p</i> = 84.4 Pa/m	EC HON ERATU Saturated Suction مt = 0.005 K/m مرب = 69.2 Pa/m	A TEMPERATURE, °C -5 Δt = 0.01 K/m Δp = 138.3 Pa/m 2.41	Δ <i>t</i> = 0.005 K/m Δ <i>p</i> = 92.6 Pa/m 2.37	+5 $\Delta t = 0.01 \text{ K/n}$ $\Delta p = 185.3 \text{ Pa}/$ 3.42 3.42
SUCT		20 Δt = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 6.31	EC ΠΟΝ ERATU Saturated Suction Δr = 0.005 K/m Δρ = 69.2 Pa/m 1.66 3.11 C(1)	Temperature, °C -5 $\Delta t = 0.01 \text{ K/m}$ $\Delta p = 138.3 \text{ Pa/m}$ 2.41 4.50 0.52	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 92.6 \text{ Pa/m}$ 2.37 4.42 0.28	$\Delta t = 0.01$ K/n $\Delta p = 185.3$ Pa 3.42 6.37 12.47
SUCT		20 Δf = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 5.31 10.10	2C ΠΟΝ ERATU Saturated Suction Δr = 0.005 K/m Δp = 69.2 Pa/m 1.66 3.11 6.61 12 58	A Temperature, °C -5 Δt = 0.01 K/m Δp = 138.3 Pa/m 2.41 4.50 9.53 18.00	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 92.6 \text{ Pa/m}$ 2.37 4.42 9.38 17 79	+5 Δ <i>t</i> = 0.01 K/n Δ <i>p</i> = 185.3 Pa/ 3.42 6.37 13.46 25.49
SUC Size, mm 10 15 20 25 32		20 Δr = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 5.31 10.10 21.04	2C ΠΟΝ ERATU Saturated Suction Δt = 0.005 K/m Δp = 69.2 Pa/m 1.66 3.11 6.61 12.58 26.17	The second seco	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 92.6 \text{ Pa/m}$ 2.37 4.42 9.38 17.79 36.94	 5 Δt = 0.01 K/n Δp = 185.3 Pal 3.42 6.37 13.46 25.48 52.86
Suc Steel Nominal Line Size, mm 10 15 20 25 32 40		20 Δr = 0.01 K/m Δρ = 84.4 Pair 1.33 2.50 5.31 10.10 21.04 31.73	Saturated Suction ΔT = 0.005 K/m Δp = 69.2 Pa/m 1.66 3.11 6.61 12.58 26.17 39.40	Temperature, °C -5 $\Delta t = 0.01 \text{ K/m}$ $\Delta p = 138.3 \text{ Pa/m}$ 2.41 4.50 9.53 18.09 37.56 56.39	$\Delta t = 0.005 \text{ Km}$ $\Delta p = 92.6 \text{ Palm}$ 2.37 4.42 9.38 17.79 36.94 55.53	+5 Δt = 0.01 K/n Δp = 185.3 Pa/ 3.42 6.37 13.46 52.86 79.38
SUC Steel Nominal Line Size, mm 10 15 20 25 32 40 50	Δr = 0.005 K/m Δp = 42.2 Pa/m 0.91 1.72 3.66 6.98 14.58 21.99 42.72	20 Δr = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51	Saturated Suction Δaf = 0.005 Kar Δaf = 0.005 Kar Δaf = 0.025 Kar	Temperature, °C -5 Δμ = 0.01 K/m Δμ = 138.3 Pa/m 18.09 37.56 56.39 10.928	Δ <i>t</i> = 0.005 K/m Δ <i>p</i> = 92.6 Pa/m 2.37 4.42 9.38 17.79 36.94 55.53 107.61	+5 Δr = 0.01 K/n Δρ = 185.3 Pal 3.42 6.37 13.46 52.86 79.38 153.66
SUC Size, mm 10 15 20 25 32 40 50 65	Δr = 0.005 K/m Δρ = 4.2.2 Pa/m 0.91 1.72 3.66 6.98 14.58 21.99 42.72 6.842	20 Δr = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51 98.23	Δt = 0.005 K/m Δt = 0.005 K/m Δp = 69.2 Pa/m 1.66 1.61 12.58 26.17 39.40 76.29 12.06	Temperature, °C -5 $\Delta t = 0.01 \text{ K/m}$ $\Delta p = 138.3 \text{ Pa'm}$ 2.41 4.50 9.53 18.09 37.56 56.39 109.28 109.28	$\Delta t = 0.005 \text{ K/m} \\ \Delta p = 92.6 Parm \\ 2.37 \\ 4.42 \\ 9.38 \\ 17.79 \\ 3.694 \\ 55.53 \\ 107.61 \\ 171.62 \\ \end{cases}$	 ≤5 Δt = 0.01 K/n Δp = 185.3 Pal 3.42 6.37 13.46 25.48 52.86 79.38 153.66 245.00
SUCT Steel Nominal Line Size, mm 10 15 20 25 25 25 20 25 32 40 50 65 80	Δr = 0.005 K/m Δρ = 4.2.2 Pain 0.91 1.72 3.66 6.98 21.99 42.72 68.42 21.52	20 Δ/ = 0.01 K/m Δρ = 84.4 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51 98.23 174.28	Saturated Suction Saturated Suction <i>Δμ</i> = 0.005 K/m <i>Δμ</i> = 69.2 Pa/m 1.66 1.65 1.258 26.17 39.40 76.29 122.06 216.15	Δremperature, °C -5 Δr = 0.01 K/m Δρ = 138.3 Pa/m 2.41 4.50 9.53 18.09 37.56 56.39 109.28 174.30 308.91	Δ <i>t</i> = 0.005 K/m Δ <i>p</i> = 92.6 Pa/m 2.37 2.42 9.38 17.79 36.94 55.53 107.61 177.62 304.12	+5 Δr = 0.01 K/n Δρ = 185.3 Pal 3.42 6.37 13.46 52.86 79.38 153.66 245.00 433.79
SUCT	Δr = 0.005 Km Δr Δρ = 4.2.2 Pam 0.91 1.72 3.66 6.99 14.58 21.99 42.72 68.42 121.52 121.52 229.45	20 20 Δr = 0.01 K/m Δρ = 8.44 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51 98.23 174.28 356.67	ECTION ERATU Saturated Suction Δr = 0.005 K/m Δρ = 0.2 Pa'm 1.6.6 1.6.6 1.2.58 26.17 39.40 76.29 12.206 216.15 442.76	Δr = 0.01 K/m Δr = 0.01 K/m Δρ = 138.3 Pa/m 2.41 4.50 9.53 18.09 37.56 56.39 109.28 109.28 308.91 308.91 631.24	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 92.6 Parm$ 2.37 2.37 17.79 3.694 55.53 107.61 177.62 304.12 621.94	+5 Δ <i>μ</i> = 0.01 K/n Δ <i>μ</i> = 185.3 Pal 3.42 6.37 13.46 25.48 52.86 79.38 153.66 245.00 433.79 885.81
SUCT Steel Nominal Line Stee, mm 10 15 20 25 32 40 40 40 50 65 80 100 125 52 52 52 52 52 52 52 52 52	Δ/ = 0.005 K/m Δ/ = 0.005 K/m Δρ = 4.2.2 Pain 0.91 1.72 3.66 6.98 21.99 42.72 68.42 21.52 249.45 452.28	20 △ - 0.01 K/m △ - 0.01 K/m △ - 0.01 K/m 3.50 5.51 10.10 21.04 31.73 61.51 98.23 174.28 356.87 546.625	2CTION 2ERATU Saturated Staction Δα = 0.005 K/m Δρ = 69.2 Pa/m 1.66 12.58 26.17 39.40 76.29 122.06 216.15 442.76 800.19	Arene and the second s	$\Delta t = 0.005$ K/m $\Delta p = 92.6$ Pa/m 2.37 4.42 9.38 17,79 36.94 55.53 107.61 171.62 370.412 621.94 1124.47	+5 Δr = 0.01 K/n Δp = 185.3 Pal 3.42 6.37 13.46 25.48 52.86 79.38 153.66 245.00 433.79 885.81 1598.31
SUCT Steet Neminal Line Size, mm 10 20 25 32 40 90 63 60 100 125 150	Δr = 0.005 Km - Δρ = 4.2.3 Pam - 0.91 1.72 3.66 6.98 14.58 21.99 42.72 68.42 121.52 229.945 452.08 733.59	20 Δr = 0.01 K/m Δρ = 8.44 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51 98.23 174.28 36.67 646.25 1946.77	Saturated Suction 2 ERATU Saturated Suction Δr = 0.005 K/m Δρ = 0.2 Pa/m 1.6.6 1.6.6 1.6.5 1.2.58 26.17 39.40 76.29 72.06 216.15 402.76 800.19 129.607	Art = 0.01 K/m Δr = 0.01 K/m Δρ = 138.2 Pa/m 2.41 4.50 9.53 18.09 37.56 56.53 109.28 174.30 308.91 631.24 1139.74 1846.63	$\Delta t = 0.005$ K/m $\Delta p = 92.6$ Pa/m $\Delta p = 92.6$ Pa/m 2.37 4.42 9.38 107.61 171.62 304.12 304.12 621.94 1124.47 1819.59	$Δ_{P} = 0.01 \text{ K/m}$ $Δ_{P} = 185.3 \text{ Pa}$ 3.42 6.37 13.46 25.88 52.86 79.38 153.66 245.00 433.79 885.81 1598.31 2590.21
SUCT Steel Nominal Line Stee, mm 10 15 20 25 32 40 40 40 40 50 65 80 100 125 150 200 200 200 20 20 20 20 20 20		20 Δ <i>x</i> = 8.01 K/m Δ <i>y</i> = 8.44 Pa/m 1.33 2.50 3.17 10.10 21.04 31.73 174.28 356.87 364.625 1046.77 2149.60	Saturated Suction Δr = 0.095 K/m 1.66 3.11 6.61 1.258 26.25 Par/m 12.58 26.17 39.40 76.29 12.06 216.15 442.76 800.19 1296.07 2662.02	$\begin{array}{c} \text{Temperature, }^{\text{CC}} \\ \text{Temperature, }^{\text{CC}} \\ \text{Ar} = 0.01 \ \text{Km} \\ \Delta \rho = 138.3 \ \text{Pa'm} \\ \hline \Delta r = 0.01 \ \text{Km} \\ 2.41 \\ 4.50 \\ 9.53 \\ 18.09 \\ 37.56 \\ 56.53 \\ 1109.28 \\ 174.30 \\ 308.91 \\ 631.24 \\ 1139.74 \\ 1846.63 \\ 3784.58 \end{array}$	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 92.6 \text{ K/m}$ 2.37 4.42 9.38 17.79 36.94 55.53 107.61 171.62 304.12 621.94 1819.59 3735.65	$\begin{array}{c} \Delta & \Delta = 0.01 \ {\rm Km} \\ \Delta p = 1853 \ {\rm Pu} \\ 3.42 \\ 5.46 \\ 5.2.86 \\ 70.38 \\ 153.66 \\ 245.00 \\ 433.79 \\ 885.81 \\ 1598.31 \\ 2590.21 \\ 5503.12 \end{array}$
SUCT Steet Nominal Line Sizes mm 13 20 25 25 25 20 25 32 40 50 60 60 100 125 125 125 200 25 25 25 25 25 25 25 25 25 25	Δr = 0.095 K/m Δρ = 4.22 Pain 0.91 1.72 3.66 6.98 14.58 21.99 42.72 21.92 42.72 9.42 12.52 12.52 12.52 12.52 12.52 1506.11 2731.00	20 Δr = 0.01 K/m Δρ = 8.4.4 Pa/m 1.33 2.50 5.31 10.10 21.04 31.73 61.51 98.23 174.28 366.87 646.25 1046.77 2149.60 3895.57	EC HONK ERATU Saturated Staction → ar = 00.005 K/m → ap = 09.2 Pa/m 1.66 1.11 0.61 12.58 26.17 39.40 76.29 122.06 216.15 442.76 800.19 1226.07 2662.02 4418.22	Aremperature, °C -5 Δr = 0.01 K/m Δρ = 138.2 Pa/m 9.53 18.09 37.56 56.39 109.28 174.30 308.91 631.24 1139.74 1846.63 3784.58 6831.91	$\Delta t = 0.005 \text{ K/m} \\ \Delta p = 92.6 Pa/m \\ 2.37 \\ 4.42 \\ 9.38 \\ 17.79 \\ 36.94 \\ 55.53 \\ 107.61 \\ 171.62 \\ 304.12 \\ 621.94 \\ 1124.47 \\ 1819.59 \\ 3735.65 \\ 6759.98 \\ \end{cases}$	Δ <i>I</i> = 0.01 K/m Δ <i>p</i> = 185.3 Pa/ Δ <i>q</i> = 285.3 Pa/ 3.42 4.37 3.46 25.48

SUCTION LINE SELECTION –LOW TEMPERATURE							
			Saturated Suction	Temperature, °C			
Steel Nominal Line	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 12.1 \text{ Pa/m}$	$\Delta t = 0.01 \text{ K/m}$ $\Delta p = 24.2 \text{ Pa/m}$	∆t = 0.005 K/m ∆p = 19.2 Pa/m	$\Delta t = 0.01 \text{ K/m}$ $\Delta p = 38.4 \text{ Pa/m}$	$\Delta t = 0.005 \text{ K/m}$ $\Delta p = 29.1 \text{ Pa/m}$	$\Delta t = 0.01 \text{ K/m}$ $\Delta p = 58.2 \text{ Pa/m}$	
10	0.19	0.29	0.35	0.51	0.58	0.85	
15	0.37	0.55	0.65	0.97	1.09	1.60	
20	0.80	1.18	1.41	2.08	2.34	3.41	
25	1.55	2.28	2.72	3.97	4.48	6.51	
32	3.27	4.80	5.71	8.32	9.36	13.58	
40	4.97	7.27	8.64	12.57	14.15	20.49	
50	9.74	14.22	16.89	24.50	27.57	39.82	
65	15.67	22.83	27.13	39.27	44.17	63.77	
80	28.08	40.81	48.36	69.99	78.68	113.30	
100	57.95	84.10	99.50	143.84	161.77	232.26	
125	105.71	153.05	181.16	261.22	293.12	420.83	
150	172.28	248.91	294.74	424.51	4/6.47	683.18	
200	356.67	514.55	609.20	874.62	981.85	1402.03	
250	649.99	937.58	1107.64	1589.51	1/82.31	2545.46	
300	1040.27	1504.90	1111.90	2330.49	2659.98	2020	

	LIQUID LINE SELECTION-PUMP								
Pumped		iouid Over	feed Ratio	High-Pressure			Thermosip	ohon Lubrica es Gravity Fl	nt Cooling ow ^c
Nominal Size, mm	3:1	4:1	5:1	at 21 kPa ^a	Hot-Gas Defrost ^a	Equatizer High Side ^b	Supply	Return	Vent
40	513	387	308	1544	106	791	59	35	60
50	1175	879	703	3573	176	1055	138	88	106
65	1875	1407	1125	5683	324	1759	249	155	187
80	2700	2026	1620	10 150	570	3517	385	255	323
100	4800	3600	2880	_	1154	7034	663	413	586
125	_	_	_	_	2089	_	1041	649	1062
150	_	_	_	_	3411	_	1504	938	1869
200	_	_	_	_	_	_	2600	1622	3400
Source: Wile (197 Rating for hot-gas (gage), defrost pro temperature diffe	7). s branch lines un resoure of 483 kPe rential	ader 30 m wit a (gage), and -	h minimum in 29°C evaporat	let pressure of 724 kPa ons designed for a 5.6 K	^b Line sizes ba ^c From Frick C	sed on experience us o. (1995). Values for	ing total system ev r line sizes above 10	aporator kilowa 00 mm are extra	ts. polated.

Temperature-0C	Liquid volume m3/kg	Liqui d volume with 5:1 ratio- m3/kg	Vapour volue- m3/kg	Ratio
-40	0.00145	0.0072	1.55	215
20	0.00194	0.0097	1 504	155

occupied by vapours, and hence selection of one size

higher is more than adequate.

- 1. Wet Return sizing--One Size larger than calculated Suction Line or velocity reduced by $\sqrt{1/(circulation rate)}$. It means $\frac{1}{2}$ the velocity selected for dry suction
- 2. Gas Line Velocity is higher than Liquid line velocities since Density of liquid is higher hence more friction and thus more pressure drop in liquid lines hence velocity in liquid lines is low
- 3. Smaller Diameters have low velocity, larger diameters have higher velocity

aar Hydraulic Shock/water Hammer-Why? Damaging Hydraulic Shocks are often Condensation induced 1. Occur in low temperature applications during onset or 2. termination of defrost Normally occur in two phase suction line-wet return line-due 3. to liquid slugs During initiation of defrost hot gas rushes in low side and relieved at termination When gas flow is large it scoops up liquid from wet return line Wet return header closed without exit gas gets compressed 6. even more When pressure rises the gas gets condensed and draws liquid in to the suction behind it and the liquid hits the close 7. end cap The slugs then develop pressures of even up to 52 bar and 8. damage seamless pipes even up to 400 mm diameter.

26th June 2020

aar

PIPING PRACTICES TO DECREASE HYDRAULIC SHOCKS GOOD PIPING PRACTICES Hot gas piping-No traps, if traps unavoidable then provide 1. liquid drains 1. Piping to slope in direction of flow except for L.P. The evaporator must be fully drained before admitting hot gas, giving any liquid slugs free flow through evaporator to vessel 2. Provide loops – for thermal contraction & expansion suction piping Especially important for evaporators with vertical suction header and bottom feed 3. Oil separator to be mounted above crankcase level for oil to flow to compressor crankcase Evaporator shut off valves with stem horizontal For all high points provide-vent valves-for purging 4 Wet suction should contain no traps Liquid line valves- install preferably in vertical lines 5 Evaporator outlet connection from top of wet return header 6. Use eccentric reducers instead concentric wherever 7 Wet suction and branches-No dead end or closed valves possible Do not overcharge or undercharge LP vessel Draining a vessel puts gas in liquid line 7. Use always back seating type valves 9. Overfilling puts liquid in gas lines 10. 8. In horizontal liquid line mount globe valves with Use soft gas defrost with smaller solenoid in parallel to 11. stems horizontal to eliminate liquid accumulation equalize pressures for larger plants <u>both in liquid and hot</u> <u>de</u>frost lines to evaporator upstream as also for reducing pressure drop.

aa

GOOD PIPING PRACTICES

- 9. Valves to be installed to close against flow or pressure
- 10. Use Long stem valves- for insulated pipe lines
- 11. Suction branches should be taken from top of header
- 12. Liquid branches to be taken from bottom of header
- 13. Hot gas branches to be taken from top of header
- 14. Always seal caps for valves not in use-
- like drain, purge, charging valves
- 15. Safety valve discharge outlet pipe –15 ft. Above ground
- 16. Drain/vent caps to be provided with small drilled hole 17.No shut off valve before safety valve & if provided in
- locked open position with handle removed 18. Operational Valves should be approachable from
- from/fixed platform and not ladder 19. Water tank /spray in plant room-ammonia

PIPE	PIPE SUPPORT SPACING					
Pipe Diameter-inch	Maximum Span-ft	Minimum rod Diameter- Inch				
Up to 1	7	3/8				
1 1⁄4	9	3/8				
2	10	3/8				
2 1⁄2	11	1/2				
3	12	1/2				
4	14	5/8				
5	16	5/8				
6	17	34				
8	19	7/8				
10	22	7/8				
12	23	7/8				
14	25	1				
- 16	27	1				
18	28	1 1⁄4				
20	30	1 1/4				

Sr No	Description	ASTM	ISO	BS	EN
1	For room temperatures	A53	9329-1	3601	10216-1
2	For Elevated Temp (Boilers)	ASTM A106	9329-2	3059 /1,2 , 3602-1	10216-2
3	For low temperatures	SA333 , SA 334	9329-3	3603	10216-4
4	For heat exchangers tubes	A179 ,A178 ,A333 ,A214 & A334	6758, 6759	3606	10216-2 8 10216-4

